A simulation study of the dynamics of a driven filament in an Aristotelian fluid.
نویسندگان
چکیده
We describe a method, based on techniques used in molecular dynamics, for simulating the inertialess dynamics of an elastic filament immersed in a fluid. The model is used to study the "one-armed swimmer". That is, a flexible appendage externally perturbed at one extremity. For small-amplitude motion our simulations confirm theoretical predictions that, for a filament of given length and stiffness, there is a driving frequency that is optimal for both speed and efficiency. However, we find that to calculate absolute values of the swimming speed we need to slightly modify existing theoretical approaches. For the more relevant case of large-amplitude motion we find that while the basic picture remains the same, the dependence of the swimming speed on both frequency and amplitude is substantially modified. For large-amplitudes we show that the one-armed swimmer is comparatively neither inefficient nor slow. This begs the question, why are there little or no one-armed swimmers in nature?
منابع مشابه
Combined mixed convection and radiation simulation of inclined lid driven cavity
This paper presents a numerical investigation of the laminar mixed convection flow of a radiating gas in an inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The governing differential equations including continuity, momentum and energy are solved numerically by the computational fluid dynamics techniques (CFD) to obtain the velocity and tem...
متن کاملNumerical simulation of flow hydrodynamic around dolphin body in viscous fluid
The biomimetic and hydrodynamic study of aquatic animals is one of the most challenging computational fluid dynamics topics in recent studies due to the complexity of body geometry and the type of flow field. The movement of the aquatic body, and particularly the tail section and the corresponding movement of fluid around the body, causes an unsteady flow and requires a comprehensive study of t...
متن کاملExperimental study and application of computational fluid dynamics on the prediction of air velocity and temperature in a ventilated chamber
The shape of the air flow in the interior is heavily influenced by the air distribution system and the way air enters and exits. By numerically simulating flow by computational fluid dynamics, one can determine the flow pattern and temperature distribution and, with the help of the results, provide an optimal design of the air conditioning system. In this study, a chamber was first constructed ...
متن کاملNumerical simulation of hydrodynamic properties of Alex type gliders
Simulation of an underwater glider to investigate the effect of angle of attack on the hydrodynamic coefficients such as lift, drag, and torque. Due to the vital role of these coefficients in designing the controllers of a glider and to obtain an accurate result, this simulation has been studied at a range of operating velocities. The total length of the underwater glider with two wings is 900 ...
متن کاملCFD Simulation of UV Disinfection Reactor for Applesauce with a Low UV Absorption Coefficient
In this study, a Computational Fluid Dynamics (CFD) model was developed to evaluate ultraviolet disinfection applesauce reactor. To simulate UV reactors, three sets of equations, including hydrodynamics, radiation and species mass conservation were solved simultaneously. The Realizable k-e turbulence model and the discrete ordinate method were used to find the UV radiation profile through the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 224 2 شماره
صفحات -
تاریخ انتشار 2003